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Abstract

A complete analysis is presented for the far-field creeping flow produced by a multipolar force distribution in a fluid
confined between two parallel planar walls. We show that at distances larger than several wall separations the flow field
assumes the Hele–Shaw form, i.e. it is parallel to the walls and varies quadratically in the transverse direction. The asso-
ciated pressure field is a two-dimensional harmonic function that is characterized by the same multipolar number m as
the original force multipole. Using these results we derive asymptotic expressions for the Green�s matrix that represents
Stokes flow in the wall-bounded fluid in terms of a multipolar spherical basis. This Green�s matrix plays a central role in
our recently proposed algorithm [Physica A 356 (2005) 294] for evaluating many-body hydrodynamic interactions in a
suspension of spherical particles in the parallel-wall geometry. Implementation of our asymptotic expressions in this
algorithm increases its efficiency substantially because the numerically expensive evaluation of the exact matrix elements
is needed only for the neighboring particles. Our asymptotic analysis will also be useful in developing hydrodynamic
algorithms for wall-bounded periodic systems and implementing acceleration methods by using corresponding results
for the two-dimensional scalar potential.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical and theoretical investigations of particle motion in suspensions bounded by planar walls re-
quire efficient methods for evaluating hydrodynamic interactions in these systems. Examples of phenomena
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where the hydrodynamic wall effects are important include collective particle motion in quasi-bidimensional
colloidal suspensions [1–5], and conformation dynamics of a DNA molecule in a parallel-plate microchan-
nel [6].

Several methods for evaluating hydrodynamic interactions in wall-bounded systems have been proposed.
In some studies, the flow reflected from the walls was calculated numerically using either boundary-integral
[7] or finite-difference [6] techniques. In a different approach [8], the exact point-force solution for the flow
between the walls [9] was used. Wall effects were also included using a multiple-reflection technique [10],
and several approximation methods were proposed [11–13]. While all of these methods have their merits,
they also have some essential disadvantages, such as a high numerical cost or an insufficient (in many cases
unknown) accuracy.

Recently we have derived [14,15], a novel algorithm for evaluating hydrodynamic friction matrix in a
wall-bounded suspension of spheres under creeping-flow conditions.2 Our Cartesian-representation method
relies on transformations between a spherical basis set of solutions of Stokes equations (this set is consistent
with the particle geometry) and a Cartesian basis set (which is consistent with the wall geometry). The algo-
rithm provides highly accurate results for multiparticle friction and mobility matrices.

Using our approach, we have obtained several interesting numerical results. In particular, we have
shown that the friction matrix undergoes a crossover from the quasi-three-dimensional to quasi-two-dimen-
sional form when the interparticle distance becomes larger than the wall separation H. We have also ob-
served an unusually large resistance coefficient for a long rigid chain of spheres in transverse motion
(with respect to the orientation of the chain) in a narrow, wall-bounded space. Since both these effects
involve flow on the length scale l � H, they are not captured by the usual single-wall superposition approx-
imation which does not properly take the far-field flow into account (as demonstrated in [14]).

Large-scale studies of particle dynamics in the two-wall geometry require efficient simulation algorithms.
In our approach [14,15] the most expensive part is evaluation of the Green�s matrix G in the multipolar
representation. This matrix is a key quantity in our algorithm—its elements correspond to the coefficients
in the expansion of the hydrodynamic Green�s tensor for the wall-bounded system into multipolar basis
fields. The inverse of the Green�s matrix combined with the one-particle reflection matrices yields the
multiparticle hydrodynamic friction matrix.

In our algorithm [14,15] the matrix G is expressed in terms of lateral Fourier integrals with respect to the
two-dimensional wave vector in a plane parallel to the walls. Evaluation of these integrals is especially dif-
ficult for widely separated particles due to the oscillatory character of the integrands. In the present paper
we derive much simpler asymptotic formulas for the matrix G in the far-field regime. When the particle
separation is sufficiently large, these formulas can be used instead of the Fourier integrals, resulting in a
significant reduction of numerical cost (and in other important simplifications).

Our analysis of the asymptotic form of the matrix G relies on the observation that in the far-field regime
the velocity field in the space between the walls assumes a simple Hele–Shaw (i.e. the lubrication) form.
Accordingly, the flow field has only the lateral components and it varies quadratically across the space be-
tween the walls. Such a flow field is entirely determined by the corresponding pressure field, which is a
two-dimensional harmonic function that depends only on the lateral coordinates. It follows that at large
distances r � H, the full three-dimensional hydrodynamic problem is reduced to a much simpler two-
dimensional scalar problem for the pressure.

This paper is organized as follows. Our method [14,15] for evaluating many-particle hydrodynamic inter-
actions in the parallel-wall geometry is summarized in Sections 2 and 3. Section 2 recalls the induced-force
formulation of the problem, and Section 3 summarizes the force-multipole expansion method. The main
theoretical results of the present analysis are given in Section 4, where the Hele–Shaw approximation for
the far-field flow is discussed, and explicit expressions for Green�s matrix G are derived. In Section 5, we
2 An algorithm based on similar ideas was also developed by Jones [16].
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present some results of numerical calculations. We show the dependence of Green�s matrix elements on the
interparticle distance, and we illustrate the role of their far-field behavior in the description of hydrody-
namic interactions in rigid arrays of spheres. Concluding remarks are given in Section 6, and some technical
details are presented in the appendices.
2. Multiparticle hydrodynamic interactions

2.1. Hydrodynamic resistance

We consider the motion of N spherical particles of the radius a, which are suspended in a fluid of vis-
cosity g, under creeping-flow conditions. The system is bounded by two planar parallel walls at the posi-
tions z = 0 and z = H, where r = (x,y,z) are the Cartesian coordinates. The centers of particles
i = 1, . . .,N are at positions Ri = (Xi,Yi,Zi), and the translational and rotational particle velocities are Ui

and Xi. The external forces and torques acting on the particles are denoted by Fi and Ti. It is assumed
that the flow field satisfies the no-slip boundary conditions on the particle surfaces and the walls.

For a system of spheres undergoing translational and rotational rigid-body motion with no external
flow, the particle dynamics is characterized by the resistance matrix
fij ¼
fttij ftrij

frtij frrij

" #
; i; j ¼ 1; . . . ;N ; ð1Þ
defined by the linear relation
Fi

Ti

� �
¼

XN
j¼1

fttij ftrij

frtij frrij

" #
�

Uj

Xj

� �
. ð2Þ
The dot in the above equation denotes the matrix multiplication and contraction of the Cartesian tensorial
components of the resistance matrix. Our goal is to calculate the resistance matrix f, or its inverse, the
mobility matrix l. Our method [14,15] for evaluating these quantities is outlined below.

2.2. Induced-force formulation

The effect of the suspended particles on the surrounding fluid can be described in terms of the induced-
force distributions on the particle surfaces. These distributions can be written in a form
FiðrÞ ¼ dSaðr� RiÞf iðrÞ; ð3Þ

where
dSaðrÞ ¼ a�2dðr � aÞ. ð4Þ

By the definition of the induced force [17–19], the flow field
vðrÞ ¼
XN
i¼1

Z
Tðr; r0Þ � Fiðr0Þdr0 ð5Þ
is identical to the velocity field in the presence of the moving particles. Here
Tðr; r0Þ ¼ T0ðr� r0Þ þ T0ðr; r0Þ ð6Þ

is the Green�s function for the Stokes flow in the presence of the boundaries; the Green�s function T(r, r 0) is
decomposed into the Oseen tensor
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T0ðrÞ ¼
1

8pgr
ðÎþ r̂̂rÞ ð7Þ
and the part T 0(r, r 0) that describes the flow reflected from the walls. In Eq. (5), it is assumed that the par-
ticles move with given velocities, but no external flow is imposed.

The resistance relation (2) is linked to the induced-force distributions (3) through the expressions
Fi ¼
Z

FiðrÞdr; Ti ¼
Z

ri � FiðrÞdr ð8Þ
for the total force and torque, respectively. To determine the resistance matrix (1) we thus need to evaluate
the induced forces (3) for given translational and angular velocities of the particles.
2.3. Boundary-integral equations for the induced forces

For a system of particles moving with the translational and angular velocities Ui and Xi, the induced-
force distribution (3) can be obtained from the boundary-integral equation
½Z�1
i Fi�ðrÞ þ

XN
j¼1

Z
½dijT0ðr� r0Þ þ ð1� dijÞTðr� r0Þ� � Fjðr0Þdr0 ¼ vrbi ðrÞ; r 2 Si; ð9Þ
where
vrbi ðrÞ ¼ Ui þXi � ri ð10Þ

is the rigid-body velocity field associated with the particle motion, and Si is the surface of particle i. In the
boundary-integral equation (9), Zi denotes the one-particle scattering operator that describes the response
of an individual particle to an external flow in an unbounded space. This operator is defined by the linear
relation
Fi ¼ �Ziðvini � vrbi Þ; ð11Þ
where vini is the velocity incident to particle i. For specific particle models (e.g., rigid particles or drops),
explicit expressions for the operator Zi are known [20–22].
3. Force-multipole expansion

3.1. Spherical basis fields

As in a standard force-multipole approach [23,24] the boundary-integral equation (9) is transformed into
a linear matrix equation by projecting it onto a spherical basis of Stokes flow. To this end we use the re-
ciprocal basis sets defined by Cichocki et al. [21]. We introduce, however, a slightly different normalization
to exploit the full symmetry of the problem.

The singular and nonsingular spherical basis solutions of Stokes equations v�lmrðrÞ and vþlmrðrÞ (with
l = 1,2, . . ., m = �l, . . ., l and r = 0,1,2) have the following separable form in the spherical coordinates
r = (r,h,/):
v�lmrðrÞ ¼ V�
lmrðh;/Þr�ðlþrÞ; ð12aÞ

vþlmrðrÞ ¼ Vþ
lmrðh;/Þrlþr�1. ð12bÞ
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The coefficients V�
lmrðh;/Þ and Vþ

lmrðh;/Þ are combinations of vector spherical harmonics with angular or-
der l and azimuthal order m. This property and the r-dependence in Eq. (12) define the Stokes-flow fields
v�lmrðrÞ up to normalization.

We use here a convenient normalization introduced in [15], which emphasizes various symmetries of the
problem. Explicit expressions for the functions V�

lmr in this normalization are given in Appendix A. We note
that both in our present and in the original normalization [21], the basis fields v�lmr satisfy the identity [25]
gT0ðr� r0Þ ¼

P
lmr

v�lmrðrÞvþ�
lmrðr0Þ; r > r0; ðaÞP

lmr
vþlmrðrÞv��

lmrðr0Þ; r < r0; ðbÞ

8<
: ð13Þ
where T0(r � r 0) is the Oseen tensor (7). Relation (13) assures that the Lorentz reciprocal symmetry of
Stokes flow is reflected in the symmetry of the resulting matrix representation of the problem [24].

Following [21] we also introduce the reciprocal basis fields w�
lmrðrÞ, defined by the orthogonality relations

of the form
hdSaw�
lmrjv�l0m0r0 i ¼ dll0dmm0drr0 . ð14Þ
Here
hAjBi ¼
Z

A�ðrÞ � BðrÞdr ð15Þ
is the inner product, the asterisk denotes the complex conjugate, and dSa is defined in Eq. (4). The reciprocal
basis fields and the bra–ket notation (15) allows us to conveniently represent expansions of Stokes flow
fields into the complete sets of nonsingular and singular basis fields (12). In particular, any Stokes flow
u(r) that is nonsingular in the neighborhood of a point r = Ri has an expansion
uðrÞ ¼
X
lmr

vþlmrðr� RiÞhdSaðiÞwþ
lmrðiÞjui; ð16Þ
where
wþ
lmrðiÞ � wþ

lmrðr� RiÞ; ð17aÞ
dSaðiÞ � dSaðr� RiÞ. ð17bÞ
3.2. Matrix representation

The matrix representation of the boundary-integral equation (9) is obtained using the multipolar
expansion
FiðrÞ ¼
X
lmr

fiðlmrÞdSaðr� RiÞwþ
lmrðr� RiÞ ð18Þ
of the induced-force distributions (3). The multipolar moments in the above expression are given by the
projection
fiðlmrÞ ¼ hvþlmrðiÞjFii; ð19Þ

according to the orthogonality condition (14). The definition (19) of the multipolar expansion is justified by
the identity
v�lmrðrÞ ¼ g
Z

T0ðr� r0ÞdSaðr0Þwþ
lmrðr0Þdr0; ð20Þ
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which follows from the representation (13) of the Oseen tensor. Eqs. (18) and (20) indicate that the multi-
polar moments fi(lmr) are identical (apart from the trivial factor g) to the expansion coefficients of the flow
field scattered by an isolated particle in unbounded space into the singular basis fields v�lmr.

To obtain a linear matrix equation for the set of force multipolar moments fi(lmr), representation (18) is
inserted into the boundary-integral equation (9), and the resulting expression is expanded into the nonsin-
gular basis fields (12b), which yields
XN
j¼1

X
l0m0r0

Mijðlmrjl0m0r0Þfjðl0m0r0Þ ¼ ciðlmrÞ. ð21Þ
For a particle moving in a quiescent fluid, the coefficients
ciðlmrÞ ¼ hdSaðiÞwþ
lmrðiÞjvrbi i ð22Þ
on the right-hand side are nonzero only for l = 1 and r = 0,1. The matrix M in Eq. (21) consists of three
contributions corresponding to the three terms on the left side of Eq. (9),
Mijðlmrjl0m0r0Þ ¼ dijdll0dmm0Z�1
i ðl; rjr0Þ þ dijG

0
ijðlmrjl0m0r0Þ þ ð1� dijÞGijðlmrjl0m0r0Þ. ð23Þ
Using the bra–ket notation these contributions can be expressed in the form
Z�1
i ðl; rjr0Þ ¼ hdSaðiÞwþ

lmrðiÞjZ
�1
i jdSaðiÞwþ

lmr0 ðiÞi; ð24Þ
G0

iiðlmrjl
0m0r0Þ ¼ hdSaðiÞwþ

lmrðiÞjT
0jdSaðiÞwþ

l0m0r0 ðiÞi ð25Þ
and
Gijðlmrjl0m0r0Þ ¼ hdSaðiÞwþ
lmrðiÞjTjd

S
aðjÞwþ

l0m0r0 ðjÞi. ð26Þ
The first term Z�1
i ðl; rjr0Þ is associated with the one particle operator Z�1

i in Eq. (9), and it relates the force
multipoles fi(l

0m 0r 0) induced on particle i to the coefficients in the expansion of the flow field incoming to
this particle into the nonsingular spherical basis fields (12b). By the spherical symmetry, this term is diag-
onal in the indices l and m and is independent of m. The Green�s matrices G 0

ij(lmrjl 0m 0r 0) and
Gij(lmrjl 0m 0r 0) are associated with the integral operators that involve the kernels T 0(r, r 0) and T(r, r 0). Using
the orthogonality relations (14) one can show that the elements of these matrices correspond to the expan-
sion of the flow produced by a force multipole centered at Rj into the nonsingular basis (12b) centered at Ri.

Explicit expressions for the single-particle reflection matrix Z�1
i are well known [21,26]. Quadrature for-

mulas for the Green�s matrix Gijhave been derived in our recent publication [15], where the matrix elements
Gij(lmrjl 0m 0r 0) are represented as a combination of the free-space Green�s matrix [26,24] and the wall con-
tribution G 0

ij(lmrjl 0m 0r 0) that is given in a form of a Hankel transform of a product of several simple matri-
ces. The Hankel transform arises from angular integration of lateral Fourier modes of Stokes flow.

The many-particle resistance matrix (1) can be obtained by solving Eq. (21) and projecting the induced
force multipoles onto the total force and torque (8). Explicit expressions for the resistance matrix in terms
of the generalized friction matrix M�1 are given in [15]. In numerical applications, the system of linear
equation (21) is truncated at a given multipolar order l, and the resulting approximate friction matrix is
supplemented with a lubrication correction (as described in [15]).
4. Far-field approximation

Calculation of the exact matrix elements Gij(lmrjl 0m 0r 0) by our Cartesian-representation method [15] re-
quires numerical evaluation of Hankel transforms that involve the Bessel functions Jm�m0 ðk.ijÞ. Here k is the
magnitude of the lateral wave vector, and .ij = j.i � .jj, where .i = (Xi,Yi) denotes the lateral position of
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particle i. For large interparticle distances .ij, the factor Jm�m0 ðk.ijÞ undergoes rapid oscillations as a func-
tion of k. Thus, evaluation of the Fourier integrals in the Hankel transforms is numerically expensive for
such configurations.

In the following sections, we derive explicit asymptotic expressions for the matrix elements
Gij(lmrjl 0m 0r 0) at large interparticle distances .ij � H. As we will see, these expressions have a very simple
form, and do not require evaluation of the Fourier integrals.

4.1. Hele–Shaw form of the far-field flow

Our asymptotic analysis relies on the observation that in the far-field regime the flow between two par-
allel walls assumes the Hele–Shaw form. Accordingly, the asymptotic pressure field p = pas varies only in
the lateral direction, and the associated flow field has the lubrication form
uasðrÞ ¼ � 1

2
g�1zðH � zÞ$kpasðqÞ; ð27Þ
where
r ¼ qþ zêz ð28Þ

and $i is the two-dimensional gradient operator with respect to the lateral position q = (x,y). By the incom-
pressibility of the flow field (27), the pressure field pas satisfies the two-dimensional Laplace�s equation
r2
kp

asðqÞ ¼ 0. ð29Þ
The asymptotic expressions (27) and (29) can be obtained [27] by expanding the boundary-value problem
for Stokes flow in the space between the walls in the small parameter H/q 	 1, where q is the distance from
the force distribution that generates the fluid motion. Since the velocity field (27) itself satisfies the Stokes
equations and boundary conditions exactly, one can show that the higher-order terms in the asymptotic
expansion vanish. This property indicates that the correction terms are subdominant [28], which in turn
suggests that the asymptotic behavior (27) and (29) is approached exponentially. This conclusion is consis-
tent with the direct analysis of the asymptotic form of the Green�s function in the space between the walls
by Liron and Mochon [9] (see the discussion in Section 4.4 below).

4.2. Asymptotic basis sets

To find the far-field form of the velocity field produced by induced-force multipoles and to obtain the
corresponding asymptotic expressions for the elements of the Green�s matrix Gij(lmrjl 0m 0r 0), it is convenient
to define appropriate basis sets of Hele–Shaw flow and pressure fields. The sets of singular and nonsingular
pressures are defined by the relation
qas�m ðqÞ ¼ gU�
mðqÞ; ð30Þ
where m = 0,±1,±2, . . ., and
U�
0 ðqÞ ¼ � ln q; U�

mðqÞ ¼
1

2jmj q
�jmjeim/; m 6¼ 0; ð31aÞ

Uþ
mðqÞ ¼ qjmjeim/ ð31bÞ
are the two-dimensional harmonic basis functions. The associated Hele–Shaw basis velocity fields are
vas�m ðrÞ ¼ � 1

2
zðH � zÞ$kU

�
mðqÞ; ð32Þ
according to Eq. (27).
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Below we list several useful relations for the harmonic functions (31). First, we have the diagonal rep-
resentation for the Green�s function
U�
0 ðq� q0Þ ¼

P1
m¼�1

U�
mðqÞUþ�

m ðq0Þ; q > q0; ðaÞ

P1
m¼�1

Uþ
mðqÞU��

m ðq0Þ; q < q0; ðbÞ

8>><
>>: ð33Þ
which is analogous to the representation (13) of the Oseen tensor. Next, we also have the displacement
theorem
U�
m0 ðq� .jÞ ¼

X1
m¼�1

Uþ
mðq� .iÞSþ�

cyl ð.ij;mjm0Þ; ð34Þ
where .ij = .i � .j, and the displacement matrix is given by
Sþ�
cyl ð.;mjm0Þ ¼ hð�mm0Þð�1Þm

0 ðjmj þ jm0jÞ!
jmj!jm0j! U�

m0�mð.Þ. ð35Þ
We note that due to the presence of the Heaviside step function
hðxÞ ¼
0; x < 0;

1; x P 0

�
ð36Þ
in Eq. (35), the scalar fields with the same sign of the indices m,m 0 6¼ 0 do not couple in the displacement
relation (34). We also note that the matrix (35) satisfies the symmetry relation
Sþ�
cyl ð.;mjm0Þ ¼ Sþ��

cyl ð�.;m0jmÞ. ð37Þ
As a direct consequence of the displacement theorem (34) for the scalar pressure fields, we have the corre-
sponding displacement relation for the Hele–Shaw basis flows (32)
vas�m0 ðr� .jÞ ¼
X0
1

m¼�1
vasþm ðr� .iÞSþ�

cyl ð.ij;mjm0Þ. ð38Þ
The term with m = 0 in the above relation vanishes because vasþ0 � 0 according to Eqs. (31b) and (32). The
prime at the summation sign has been introduced to emphasize that this term is omitted.

In the following section, we will derive a diagonal representation (analogous to (13) and (33)) for the
hydrodynamic Green�s tensor describing the asymptotic far-field response of the fluid confined between
walls to a point force.

4.3. Asymptotic Green’s tensor

An explicit expression for the far-field flow produced by a point force in the space between the walls has
been derived by Liron and Mochon [9] (see also [29]). According to their results, the far-field flow produced
by a force F applied at the position (0,0,z 0) can be expressed in the form
uðrÞ ¼ 3

2
p�1g�1H�3zðH � zÞz0ðH � z0Þ$k$kð� ln qÞ � Fþ oðe�q=H Þ. ð39Þ
The above relation can also be obtained by a direct expansion of the boundary-value problem in the small
parameter H/q [27].
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Relation (39) indicates that the correction to the far-field O(q�2) asymptotic behavior of the fluid veloc-
ity u decays exponentially with q. Moreover, the vertical component of the force F does not contribute to
the O(q�2) behavior.

Eq. (39) can be rephrased as an expression for the asymptotic form Tas of the full Green�s function (6)
Tasðr; r0Þ ¼ � 3

2
p�1g�1H�3zðH � zÞz0ðH � z0Þ$k$

0
kð� ln jq� q0jÞ; ð40Þ
where r0 ¼ q0 þ z0êz. One of the gradient operators in the above formula has been applied to the primed
coordinates to emphasize the Lorentz symmetry of the Green�s tensor
Tasðr; r0Þ ¼ Tasyðr0; rÞ ð41Þ

(where the dagger denotes the transpose of the tensor). Due to the translational invariance of the system in
the lateral directions, the Green�s function (40) satisfies the identity
Tasðr� .; r0 � .Þ ¼ Tasðr; r0Þ; ð42Þ
where the vector . has only lateral components.
Using Eqs. (32) and (33) and noting that the Green�s function (40) is quadratic both in primed and un-

primed transverse variables, we find the relation
Tasðr; r0Þ ¼ � 6

pgH 3

P1
m¼�1

0
vas�m ðrÞvasþ�

m ðr0Þ; q > q0; ðaÞ

P1
m¼�1

0
vasþm ðrÞvas��

m ðr0Þ; q < q0; ðbÞ

8>>><
>>>:

ð43Þ
which is analogous to the diagonal representation of the Oseen tensor (13). Eq. (43a) combined with the
displacement theorem for the Hele–Shaw basis fields (38) and identity (42) yields the symmetric represen-
tation of the asymptotic Green�s tensor (40)
Tasðr; r0Þ ¼ � 6

pgH 3

X0
1

m¼�1

X0
1

m0¼�1
vasþm ðr� .iÞSþ�

cyl ð.ij;mjm0Þvasþ�
m0 ðr0 � .jÞ. ð44Þ
4.4. Asymptotic form of the two-wall Green�s matrix

The asymptotic form of the matrix elements (26) can be obtained by projecting relation (44) onto the
reciprocal basis fields wþ

lmr centered at the points Ri and Rj. The resulting expression involves the matrix
elements
hdSaðiÞwþ
lmrðiÞjvasþm0 ðiÞi ¼ dmm0CðZi; lmrÞ; ð45Þ
where vasþm0 ðiÞ � vasþm0 ðr� .iÞ. The elements (45) are diagonal in the azimuthal number m by cylindrical sym-
metry, they depend only on the vertical coordinate Zi of the point Ri ¼ .i þ Ziêz, and they are real. Using
these properties, the following asymptotic form of the wall Green�s matrix (26) is obtained
Gas
ij ðlmrjl0m0r0Þ ¼ � 6

pgH 3
CðZi; lmrÞSþ�

cyl ð.ij;mjm0ÞCðZj; l
0m0r0Þ. ð46Þ
Due to the symmetric structure of the expression (46) and the symmetry property (37) of the scalar displace-
ment matrix Sþ�

cyl , the Lorentz symmetry
Gas
ij ðlmrjl0m0r0Þ ¼ Gas�

ji ðl0m0r0jlmrÞ ð47Þ
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is manifest. We note that the presence of the Heaviside step function in relation (35) implies that
Gas
ij ðlmrjl

0m0r0Þ ¼ 0 for mm0 P 0. ð48Þ
The physical interpretation of the matrix C follows from the expression
vasþm ðr� .iÞ ¼
X
lr

vþlmrðr� RiÞCðZi; lmrÞ; ð49Þ
which results from Eqs. (16) and (45). The matrix C(Z; lmr) thus describes the transformation from the
representation of the flow in terms of nonsingular Hele–Shaw basis vasþm ðr� .iÞ centered at the lateral posi-
tion .i to the spherical representation (12b) centered at Ri.
4.5. Multipolar flow fields

An alternative interpretation of the matrix C is obtained by considering the far-field flow
uaslmrðr� .2;Z2Þ ¼
Z

Tasðr; r0ÞdSaðr0 � R2Þwþ
lmrðr0 � R2Þdr0 ð50Þ
produced in the space between the walls by the multipolar force density
Fðr0Þ ¼ dSaðr0 � R2Þwþ
lmrðr0 � R2Þ ð51Þ
centered at R2. By inserting representation (43) specified for the shifted asymptotic Green�s function (42)
with . = .2 into (50) and using definition (45) of the matrix C we find that
uaslmrðr� .2;Z2Þ ¼ � 6

pgH 3
vas�m ðr� .2ÞCðZ2; lmrÞ. ð52Þ
Thus, the matrix element C(Z2; lmr) represents the amplitude of the Hele–Shaw basis field vas�m in the far-
field multipolar velocity (50). Only one term contributes to this flow according to Eq. (52) because of the
cylindrical symmetry of the problem.

The asymptotic multipolar flow fields (50) can also be expressed in terms of the matrix elements (46). To
this end the right side of Eq. (50) is expanded in the spherical basis fields (12b) with the help of identity (16).
The expansion yields the relation
uaslmrðr� .2;Z2Þ ¼
X
l0m0r0

vþl0m0r0 ðr� R1ÞGas
12ðl0m0r0jlmrÞ; ð53Þ
where Gas
12 is given by Eq. (26) with the Green�s function T replaced with Tas. The above expression relates

the asymptotic flow uaslmr centered at the position R2 and the spherical basis fields centered at a different
position R1.

We note that for each m only several force multipoles (51) produce a nonzero far-field velocity (50). This
behavior results from the properties of the matrix C(Z2; lmr) that appears in relation (52); the form of this
matrix is analyzed in Section 4.6. A further discussion of the multipolar fields in the space between the walls
is given in Appendix B.
4.6. Explicit expressions for the transformation matrix C

A general structure of the matrix C can be inferred using scaling arguments. According to Eq. (12b)
spherical basis fields vþlmrðr� RiÞ are homogeneous functions of the order l + r�1 of the relative-position
vector ri = r�Ri. Similarly, Eqs. (31b) and (32) imply that the Hele–Shaw basis fields vasþm ðr� .iÞ are
combinations of homogeneous functions of the order jmj�1, jmj, and jmj + 1 of ri. Since the coefficients
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C(Zi; lmr) are independent of ri, relation (49) implies that the non-zero elements of C(Zi; lmr) satisfy the
condition
lþ r� jmj 6 2. ð54Þ

A detailed analysis of relation (49) reveals that the nonzero elements of the matrix C can be written in the
form [27]
CðZ; l�l rÞ ¼ B�
l�l rðZ; lÞ; l ¼ jmj P 1; ð55Þ
where B�
krðZ; lÞ are the elements of the 3 · 3 matrix
B�
krðZ; lÞ

� �
k;r¼0;1;2

¼ 1

2
A�ðlÞ

�ZðH � ZÞ 
ðH � 2ZÞ 2

�lðH � 2ZÞ
ðlþ 1Þð2lþ 3Þ1=2

�2l

ðlþ 1Þð2lþ 3Þ1=2
0

2lðlþ 1Þ1=2

ðlþ 2Þð2lþ 3Þðlþ 5Þ1=2
0 0

2
6666664

3
7777775

ð56Þ
with
A�ðlÞ ¼ ð
2Þll! 4p
ð2lþ 1Þð2lÞ!

� �1=2
. ð57Þ
The range k = 0,1,2 of the index k = l�jmj in Eq. (56) results from the conditions jmj 6 l and (54). All other
elements of the matrix C vanish.

We close our theoretical considerations with a remark that the asymptotic form Gas
ij of the Green�s matrix

Gij is approached exponentially for Rij ! 1 because Liron–Mochon formula (39) is exponentially accurate
at large distances. As in relation (39), the lengthscale for this approach is set by the wall separation H. The
asymptotic expression (46) should thus be very accurate when the interparticle distance Rij is larger than
several wall separations H. This conclusion is supported by our numerical results discussed in the following
section.
5. Numerical examples

5.1. Matrix elements

A typical behavior of the Green�s matrix Gij is illustrated in Figs. 1 and 2. The results are shown for the
matrix elements
G12ð1�1 0jl l rÞ ¼ ð�1ÞrG�
12ð110jl�l rÞ ð58Þ
versus the lateral distance .12 scaled by the wall separation H for several values of the parameters l, r and
l > 0. The elements (58) play a special role in our theory because in the asymptotic regime .12 � H they are
directly related to the far-field multipolar flow (50) according to Eq. (B.7). In all examples, the vertical coor-
dinates of the points (1) and (2) are Z1 ¼ Z2 ¼ 1

4
H . For other configurations the matrix elements have a

similar behavior.
We present our results in the form of the rescaled elements defined by the relation
G12ð1
1 0jl�l rÞ ¼ Hl�l�rþ1 ~G12ð1
1 0jl�l rÞU�
�ðlþ1Þð.12Þ. ð59Þ
For those values of parameters l and l for which the matrix elements (59) do not vanish, the factor
U�

�ðlþ1Þð.12Þ � .�ðlþ1Þ
12 corresponds to the far-field behavior of Gas

12ð1
1 0jl�l rÞ, according to Eqs. (35)



Fig. 1. Rescaled matrix elements ~G12ð1�1 0jl 1 rÞ versus lateral distance .12 for Z1 ¼ Z2 ¼ 1
4
H ; values of parameters l and r as labeled.

Exact solution (solid lines); asymptotic behavior (dotted lines).

Fig. 2. Rescaled matrix elements ~G12ð1�1 0j4 m 0Þ versus lateral distance .12 for Z1 ¼ Z2 ¼ 1
4
H ; values of parameter m as labeled.

Exact solution (solid lines); asymptotic behavior (dotted lines).
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and (46). In the asymptotic regime .12 � H the rescaled elements ~G
as

12ð1
1 0jl�l rÞ depend only on the
vertical coordinates Z1 and Z2. The nonzero asymptotic elements are quadratic functions of the vertical
coordinate Z1, and they are at most quadratic in Z2 but can also be linear or constant in this variable,
as indicated by Eqs. (46) and (56). The far-field flow (50) is related to these elements by Eq. (B.9).

Fig. 1 illustrates the behavior of the matrix elements ~G12ð1�1 0jl 1 rÞ with

lþ r 6 3. ð60Þ
All these functions approach nonzero asymptotic values ~G
as

12ð1�1 0jl 1 rÞ 6¼ 0 for large interparticle dis-
tances .12 � H, according to Eqs. (46) and (54). The corresponding behavior of the unscaled matrix ele-
ments (58)
G12ð1
1 0jl�1 rÞ � .�2
12 ; .12 � H ; ð61Þ
follows from Eqs. (31a), (35), and (46).
The matrix elements (61) are directly related to the multipolar flow fields (50), as indicated by Eq. (B.7).

Therefore, we find that Eq. (61) corresponds to the slowest possible far-field decay of the flow produced by
a multipolar force distribution. The multipoles (60) include the horizontal Stokeslet (l = 1, r = 0), rotlet
(l = 1, r = 1), stresslet (l = 2, r = 0), and three other multipoles, one of which has the spherical-harmonics
order l = 3. The numerical results shown in Fig. 1 indicate that the approach of ~G12 to the asymptotic val-
ues is exponential, which is consistent with our discussion in Section 4.

Fig. 2 illustrates the behavior of matrix elements (58) for l = 4 and r = 0. Unlike the elements presented
in Fig. 1, the rescaled elements ~G12ð1�1 0j4 m 0Þ with m = 0,1 vanish at large separations . � H, which is
consistent with condition (54). The remaining rescaled elements with m = 2,3,4 tend exponentially to non-
zero asymptotic values.

5.2. Applications in multiparticle hydrodynamic-interactions algorithms

The simplest numerical application of our asymptotic formulas (46), (55), and (56) is to implement them
directly in the induced-force-multipole equation (21). To this end, the matrix (26) is represented as the
superposition of the long-range asymptotic part and the short-range correction, i.e.
Gijðlmrjl0m0r0Þ ¼ Gas
ij ðlmrjl0m0r0Þ þ dGijðlmrjl0m0r0Þ. ð62Þ
The asymptotic part Gas
ij ðlmrjl

0m0r0Þ can be evaluated from our explicit formulas at a low numerical cost.
To obtain the correction term dGij(lmrjlmr), first the expression Gij(lmrjl 0m 0r 0) is calculated using the
Cartesian-representation method described in [14,15] and next, the asymptotic expression is subtracted
from the result. Since the correction term is short ranged, the matrix dGij(lmrjl 0m 0 r 0) can be truncated
by setting
dGijðlmrjl0m0r0Þ ¼ 0 for .ij > .as; ð63Þ

where the truncation distance .as is of the order of several wall separations H. The results shown in Figs. 1
and 2 and other similar tests indicate that the asymptotic approximation for the Green�s matrix is very
accurate for .as J 3H. Thus, the numerically expensive contribution dGij has to be evaluated only for
the neighboring particles at an O(N) cost.

To test our asymptotic approach and illustrate the role of the long- and short-range contributions to the
Green�s matrix G, we consider a benchmark case of a linear rigid array of N touching spheres translating in
the center plane in the space between closely spaced walls. The spheres are on a line parallel to the x direc-
tion and the array is moving either in the x (longitudinal) or y (transverse) direction. We focus on the trans-
lational friction coefficients evaluated per particle
�f
aa
C ¼ ðNfkÞ�1

XN
i;j¼1

fttaaij ; a ¼ x; y; ð64Þ
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where fttaaij is the aa component of the translational resistance tensor fttij defined in Eq. (2), and fi is the one-
particle lateral translational resistance coefficient [16,14].

As illustrated in Fig. 3 (see also discussion in [15,14]) the longitudinal and transverse friction coefficients
(64) behave differently. The longitudinal coefficient �f

xx
C decreases with the length of the array N, while the

transverse coefficient �f
yy
C increases with N. For tight configurations with small gaps between the wall and

particle surfaces (the case show in Fig. 3) the decrease of �f
xx
C is moderate because the friction force is dom-

inated by the local resistance due to the dissipation in these gaps. In contrast, the increase of �f
yy
C is large due

to collective long-range effects.
The mechanism of these collective effects can be explained using the results for the pressure field around

arrays of the length N = 10 and 20 plotted in Figs. 4 and 5. The figures show the normalized asymptotic far-
field pressure
Fig. 3.
center
approx
(circles
�pas ¼ HðgUÞ�1pas ð65Þ
Normalized longitudinal and transverse friction coefficients per particle �f
xx
C and �f

yy
C for linear arrays of touching spheres in the

plane between the walls, for wall separation H/2a = 1.05. Crosses represent exact results; open symbols represent asymptotic
imation (63) with .as/H = 1 (squares) and 2 (circles); solid symbols correspond to truncation (66) with .0/H = 2 (squares), 4
) and 6 (triangles). For the longitudinal coefficient �f

xx
C the open squares and circles coincide with the crosses.
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(where U is the velocity of the array), which was evaluated using the method described in Appendix C. The
results for the longitudinal motion of the array shown in Figs. 4(a) and 5(a) indicate that the pressure field is
only weakly affected by the length of the array, and its magnitude is the largest near the array ends. In con-
trast, the pressure shown in Figs. 4(b) and 5(b) for the transverse motion increases approximately linearly
with the array length N, and its magnitude is maximal near the chain center. This large pressure amplitude
is associated with the flow of the displaced fluid around the ends of the array in the confined space. The flow
is significant over the distance that scales with the length of the array l = 2Na (where a is the sphere radius).
In the Hele–Shaw regime the pressure gradient is proportional to the fluid velocity; hence, the pressure itself
is proportional to N.

To further elucidate the effects of the short-range and far-field flow components, the exact numerical re-
sults for the resistance coefficients (64) are compared in Fig. 3 with the asymptotic approximation (62) and
(63). We also show results obtained using a much cruder approximation, where the whole Green�s matrix is
truncated at a certain distance .0, i.e.
Gijðlmrjl0m0r0Þ ¼ 0 for .ij > .0. ð66Þ
Our numerical calculations indicate that the truncation (66) yields poor results. The far-field flow contribu-
tion is especially important for the transverse motion of the array because of the positive-feedback effect:
For this motion the dipolar Hele–Shaw flow field generated by a given particle acts as a back flow on the
other particles. This back flow, in turn, produces an increase in the induced force distribution that generates
the dipolar flow. This back flow mechanism, resulting in the large transverse resistance, is consistent with
our discussion of the pressure field shown in Figs. 4(b) and 5(b).

In contrast to the crude approximation (66), a truncation of the short-range part (63) of the Green�s
matrix yields accurate results already with moderate values of the truncation parameter .as. The results
shown in Fig. 3 indicate that the truncations at .as/H = 1 for the longitudinal motion and at .as/H = 2
for the transverse motion are sufficient. The results with .as/H P 3 (not shown) are essentially indistin-
guishable from the exact results.

Application of our far-field asymptotic expressions in the algorithm for evaluation of many-particle
hydrodynamic friction and mobility matrices yields a substantial reduction of the numerical cost. As an
example we consider the calculation times for the friction coefficients (64) in the configuration correspond-
ing to the results in Fig. 3. To obtain these coefficients with accuracy better than 2%, the Green�s matrix
Gij(lmrjl 0m 0r 0) has to be determined for l, l 0 6 lmax, where lmax = 4. The highly accurate results shown in
Fig. 3 have been obtained using lmax = 6.

On a standard 2.5 GHz work station, evaluation of the matrix Gij with lmax = 4, using truncation
(63) of the short-range contributions at .as/H = 2, requires 2 s for N = 10 particles, 6 s for N = 20,
and 14 s for N = 40. As expected, the evaluation time grows approximately linearly with N because
it is dominated by the O(N) calculation of the exact matrix elements for the neighboring particles.
When all O(N2) matrix elements are determined from the exact Fourier-integral formulas [14,15], the
corresponding calculation times are 9, 70, and 560 s, respectively. The calculation time grows faster
than O(N2) with the system size, because for widely separated particles in long chains, evaluation of
the Fourier integrals requires a large number of integration points due to the oscillatory character
of the integrands.

The numerical tests, described above, indicate that the implementation of the asymptotic expressions in
our hydrodynamic-interaction algorithm may reduce numerical cost by almost two orders of magnitude
even for a relatively small system of N = 40 particles. We also note that the simplification afforded by
our asymptotic analysis will facilitate constructing O(N) accelerated algorithms. Furthermore, our asymp-
totic formulas can be used to develop efficient simulation techniques for doubly periodic wall-bounded
suspensions. These applications are discussed at the end of the following section.



Fig. 4. Contour plots of the normalized asymptotic pressure field (65) around a rigid array of N = 10 touching spheres moving in the
center plane between parallel walls, for wall separation H/2a = 1.05. Longitudinal motion (a); transverse motion (b). The dotted lines
delimit the regions where the asymptotic approximation is not valid.

Fig. 5. Same as Fig. 4, except that for N = 20.
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6. Conclusions

Our paper presents a complete analysis of the far-field flow produced by an arbitrary force multipole in
the space bounded by two parallel planar walls. We have shown that a force multipole characterized by the
multipolar numbers lmr produces, at large distances, a Hele–Shaw flow driven by a two-dimensional mul-
tipolar pressure field of the azimuthal order m. The amplitude of this flow has been explicitly obtained for
an arbitrary order of the source force multipole.

Our asymptotic results were applied to evaluate the multipolar matrix elements Gij(lmrjl 0m 0r 0) of the
Green�s tensor for Stokes flow in the wall-bounded domain. This matrix is used in our recently developed
algorithm [14,15] for evaluation of the multiparticle friction tensor fij in a suspension confined between two
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parallel walls. The elements of the matrix Gij are equivalent to the expansion coefficients in the displacement
theorem for Stokes flow in the bounded domain. Such a displacement theorem relates the flow produced by
a force multipole centered at a point Rj to nonsingular multipolar flows centered at a point Ri. We have
shown that in the far-field regime the matrix elements Gij(lmrjl 0m 0r 0) can be expressed in terms of much
simpler displacement formulas for the two-dimensional scalar potential.

We have found that the matrix Gij achieves its asymptotic behavior when the lateral distance between the
centers of the particles i and j exceeds several wall separationsH. Evaluation of the exact matrix elements in
terms of lateral Fourier integrals derived in [15,14] is thus needed only for the neighboring particles. There-
fore, application of the asymptotic expressions in our hydrodynamic-interaction algorithm yields an impor-
tant improvement of its numerical efficiency. (The far-field contribution to the Green�s matrix cannot be
simply neglected—for some problems such a crude approximation leads to entirely wrong values of the fric-
tion matrix; cf. discussion in Section 5.2).

Several other important consequences stem from the fact that we have reduced a complex hydrodynamic
problem to a simpler problem of a two-dimensional scalar potential. First, since for a scalar potential the
multipolar flow fields in a periodic system are known [30], the results of our analysis can be used to develop
an algorithm for hydrodynamic interactions in a periodic wall-bounded system. Without the asymptotic
expressions, evaluation of the periodic hydrodynamic Green�s matrix would be much more difficult, as dis-
cussed in [27].

Next, for scalar potentials, fast multipole and PPPM acceleration techniques are well developed [31].
Combined with our asymptotic results, such methods can be applied for fast evaluation of hydrodynamic
interactions in wall-bounded suspensions. Development of accelerated algorithms for suspensions will
require implementation of certain techniques that are specific to multiparticle hydrodynamic systems,
e.g. an appropriate preconditioning of the Green�s matrix and incorporating the lubrication interactions
into the calculation scheme. These techniques were used in accelerated Stokesian-dynamics algorithms
for unbounded suspensions [32, 33]. Our present asymptotic results greatly facilitate development of accel-
erated algorithms for wall-bounded systems, and our research is currently focused on this problem.
Acknowledgments

S.B. would like to acknowledge the support by NSF Grant CTS-0201131. E.W. was supported by NASA
Grant NAG3-2704 and, in part, by KBN Grant No. 5T07A 052 24. J.B. was supported by NSF Grant
CTS-0348175.
Appendix A. Spherical basis

The spherical basis sets of Stokes flows v�lmr used in the present paper are normalized differently than the
corresponding sets v�ðCFSÞ

lmr introduced in [21]. The transformations between the basis fields are
v�lmrðrÞ ¼ N�1
lr n

�1
lm v

�ðCFSÞ
lmr ðrÞ; ðA:1aÞ

vþlmrðrÞ ¼ Nlrn�1
lm v

þðCFSÞ
lmr ðrÞ; ðA:1bÞ
where
Nl0 ¼ 1; ðA:2aÞ
Nl1 ¼ �ðlþ 1Þ�1

; ðA:2bÞ
Nl2 ¼ l½ðlþ 1Þð2lþ 1Þð2lþ 3Þ��1 ðA:2cÞ
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and
nlm ¼ 4p
2lþ 1

ðlþ mÞ!
ðl� mÞ!

� �1=2
. ðA:3Þ
Below we list the explicit expressions for the angular coefficients V�
lmrðh;/Þ for spherical basis fields (12) in

our present normalization
V�
lm0 ¼

1

ð2lþ 1Þ2
lþ 1

lð2l� 1Þ alYll�1m � 1

2
Yllþ1m

� �
; ðA:4aÞ

V�
lm1 ¼

i

lþ 1
clYllm; ðA:4bÞ

V�
lm2 ¼ blYllþ1m ðA:4cÞ
and
Vþ
lm0 ¼ alYll�1m; ðA:5aÞ

Vþ
lm1 ¼

i

lþ 1
clYllm; ðA:5bÞ

Vþ
lm2 ¼

l
2ð2lþ 1Þ alYll�1m þ l

ðlþ 1Þð2lþ 1Þð2lþ 3Þ blYllþ1m; ðA:5cÞ
where
Yll�1mð̂rÞ ¼ a�1
l r�lþ1$ rlY lmðr̂Þ

� �
; ðA:6aÞ

Yllþ1mð̂rÞ ¼ b�1
l rlþ2$ r�ðlþ1ÞY lmðr̂Þ

� �
; ðA:6bÞ

Yllmðr̂Þ ¼ c�1
l r� $sY lmðr̂Þ ðA:6cÞ
are the normalized vector spherical harmonics, as defined by [34]. Here
Y lmð̂rÞ ¼ n�1
lm ð�1ÞmPm

l ðcos hÞeimu ðA:7Þ

are the normalized scalar spherical harmonics, and
al ¼ ½lð2lþ 1Þ�1=2; ðA:8aÞ
bl ¼ ½ðlþ 1Þð2lþ 1Þ�1=2; ðA:8bÞ
cl ¼ �i½lðlþ 1Þ�1=2. ðA:8cÞ
Appendix B. Flow fields generated by force multipoles

In this Appendix B, we express the flow field
ulmrðr� .2;Z2Þ ¼
Z

Tðr; r0ÞdSaðr0 � R2Þwþ
lmrðr0 � R2Þdr0 ðB:1Þ
produced in the space between the walls by the force multipole (51) in terms of the elements of the Green�s
matrix G12. Using relation (16) to expand the right-hand side of Eq. (B.1) into the non-singular spherical
basis fields (12b) yields
ulmrðr� .2;Z2Þ ¼
X
l0m0r0

vþl0m0r0 ðr� R1ÞG12ðl0m0r0jlmrÞ; ðB:2Þ
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where the definition (26) of the Green�s matrix have been used. Eq. (53) is the asymptotic form of the above
relation.

Eq. (B.2) can be simplified by evaluating it for r = R1 and noting that
vþl0m0r0 ð0Þ ¼ 0 for l0 þ r0 > 1 ðB:3Þ
and
vþ1m00ð0Þ ¼
4

3
p

� 	�1=2

êm0 ; ðB:4Þ
where m 0 = 0, ± 1, and
ê�1 ¼ 
 1ffiffiffi
2

p ðêx � iêyÞ; ê0 ¼ êz; ðB:5Þ
which follows from Eq. (A.5a). According to the above expressions, only three terms of the sum (B.2) con-
tribute to the result,
ulmrðR1 � .2; Z2Þ ¼
4

3
p

� 	�1=2 X
m0¼�1;0;1

G12ð1m00jlmrÞêm0 . ðB:6Þ
In the asymptotic regime .12 � H this relation simplifies because the asymptotic matrix elements (46) van-
ish for m 0m P 0, as discussed in Section 4. Taking this observation into account we thus find
uasl �l rðR1 � .2; Z2Þ ¼
4

3
p

� 	�1=2

Gas
12ð1
1 0jl�l rÞê
1; ðB:7Þ
where l = 1,2, . . . The dependence of the flow field (B.7) on the lateral relative-position vector .12 can be
made more explicit by using relation (59) and the identity
U�ðlþ1Þð.12Þê
1 ¼ 
2�1=2ðlþ 1Þ�1$kU
�
�lð.12Þ; ðB:8Þ
which yields
uasl �lrðR1 � .2; Z2Þ ¼ 
 8

3
p

� 	�1=2

ðlþ 1Þ�1Hl�l�rþ1 ~G
as

12ð1
1 0jl�l rÞ$kU
�
�lð.12Þ. ðB:9Þ
We note that relation (B.9) is consistent with (52) due to Eq. (32).
Appendix C. Far-field pressure distribution

As discussed in Section 4, the flow and the pressure fields in the Hele–Shaw asymptotic regime (27) are
uniquely related (up to an additive constant in the pressure). Thus, many of the asymptotic formulas,
expressed here in terms of the velocity fields, can be translated into the corresponding expressions for
the pressure.

This remark applies, in particular, to Eq. (52) for the asymptotic multipolar flow (50). We introduce the
asymptotic multipolar pressure field paslmrðrÞ, which is defined by the relation
uaslmrðr� .2; Z2Þ ¼ � 1

2
g�1zðH � zÞrkpaslmrðq� .2; Z2Þ. ðC:1Þ
Using Eqs. (30) and (32), the flow-field identity (52) can be transformed into the corresponding pressure
identity of the form
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paslmrðq� .2; Z2Þ ¼ � 6

pH 3
U�

mðq� .2ÞCðZ2; lmrÞ. ðC:2Þ
Eq. (C.2) can be conveniently used to evaluate the far-field disturbance pressure pas in a many-particle sys-
tem. This equation describes the asymptotic pressure produced in the far-field regime by a single force mul-
tipole (51), as indicated by Eqs. (50) and (C.1). To determine pas, the multipolar moments fi(lmr) of the
force distributions (18) induced on the surfaces of particles i = 1, . . .,N are evaluated by solving the
force-multipole Eq. (21). Combining the solution with (C.2) yields
pasðqÞ ¼
XN
i¼1

X
m

0
QiðmÞU�

mðq� .iÞ; ðC:3Þ
where
QiðmÞ ¼ � 6

pH 3

X
lr

CðZi; lmrÞfiðlmrÞ. ðC:4Þ
The contour plots in Figs. 4 and 5 were obtained using this method.
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